일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- 동적계획법과최단거리역추적
- 동적계획법
- 코딩테스트
- cos
- 백준
- issue
- vuejs
- Algorithm
- 분할정복
- android
- 알고리즘
- cos pro
- DFS와BFS
- codingtest
- DFS
- DART
- django
- C++
- Flutter
- 코테
- 코드품앗이
- Python
- Vue
- 안드로이드스튜디오
- 안드로이드
- cos pro 1급
- AndroidStudio
- 파이썬
- BAEKJOON
- 개발
- Today
- Total
목록알고리즘 (32)
Development Artist
도입 백준 단계별 풀기 DFS와 BFS 여섯 번째 문제이다. DFS와 BFS DFS - Root Node 혹은 다른 임의의 Node에서 이어진 Branch를 완벽하게 탐색하고 다른 이어진 Branch로 넘어가는 방법. 한 방향으로 계속 가서 끝을 마주하면 다른 방향으로 설정해서 마찬가지로 진행. - Stack 또는 Recursive함수로 구현. - 시간 복잡도 : 인접 리스트는 $O(V+E)$ 인접 행렬은 $O(V^2)$ // 접점(V), 간선(E) BFS - Root Node 혹은 다른 임의의 Node에서 이어진 Branch들의 바로 하나 건너 있는 Node들을 먼저 탐색. - Queue로 구현 - 시간 복잡도 : 인접 리스트는 $O(V+E)$ 인접 행렬은 $O(V^2)$ // 접점(V), 간선(E) ..
도입 백준 단계별 풀기 DFS와 BFS 다섯 번째 문제이다. DFS와 BFS DFS - Root Node 혹은 다른 임의의 Node에서 이어진 Branch를 완벽하게 탐색하고 다른 이어진 Branch로 넘어가는 방법. 한 방향으로 계속 가서 끝을 마주하면 다른 방향으로 설정해서 마찬가지로 진행. - Stack 또는 Recursive함수로 구현. - 시간 복잡도 : 인접 리스트는 $O(V+E)$ 인접 행렬은 $O(V^2)$ // 접점(V), 간선(E) BFS - Root Node 혹은 다른 임의의 Node에서 이어진 Branch들의 바로 하나 건너 있는 Node들을 먼저 탐색. - Queue로 구현 - 시간 복잡도 : 인접 리스트는 $O(V+E)$ 인접 행렬은 $O(V^2)$ // 접점(V), 간선(E) ..
도입 백준 단계별 풀기 DFS와 BFS 네 번째 문제이다. DFS와 BFS DFS - Root Node 혹은 다른 임의의 Node에서 이어진 Branch를 완벽하게 탐색하고 다른 이어진 Branch로 넘어가는 방법. 한 방향으로 계속 가서 끝을 마주하면 다른 방향으로 설정해서 마찬가지로 진행. - Stack 또는 Recursive함수로 구현. - 시간 복잡도 : 인접 리스트는 $O(V+E)$ 인접 행렬은 $O(V^2)$ // 접점(V), 간선(E) BFS - Root Node 혹은 다른 임의의 Node에서 이어진 Branch들의 바로 하나 건너 있는 Node들을 먼저 탐색. - Queue로 구현 - 시간 복잡도 : 인접 리스트는 $O(V+E)$ 인접 행렬은 $O(V^2)$ // 접점(V), 간선(E) 풀..
도입 백준 단계별 풀기 DFS와 BFS 첫 번째 문제이다. DFS와 BFS DFS - Root Node 혹은 다른 임의의 Node에서 이어진 Branch를 완벽하게 탐색하고 다른 이어진 Branch로 넘어가는 방법. 한 방향으로 계속 가서 끝을 마주하면 다른 방향으로 설정해서 마찬가지로 진행. - Stack 또는 Recursive함수로 구현. - 시간 복잡도 : 인접 리스트는 $O(V+E)$ 인접 행렬은 $O(V^2)$ // 접점(V), 간선(E) BFS - Root Node 혹은 다른 임의의 Node에서 이어진 Branch들의 바로 하나 건너 있는 Node들을 먼저 탐색. - Queue로 구현 - 시간 복잡도 : 인접 리스트는 $O(V+E)$ 인접 행렬은 $O(V^2)$ // 접점(V), 간선(E) 풀..
도입 백준 단계별 풀기 그리디 알고리즘 네 번째 문제이다. 그리디 알고리즘 그리디 알고리즘(탐욕 알고리즘)이란, 문제를 해결하는 과정에서 그 순간순간마다 최적이라고 생각되는 결정을 하는 방식으로 진행하여 최종 해답에 도달하는 문제 해결 방식이다. 특징 - 1. 최적성의 원리 : 주어진 문제에 대한 최적해가 분할된 부분 문제의 최적해로 구성된다는 원리. - 2. 최적 해 보장 불가 - 3. 효율성 개선 그리디 알고리즘 수행절차 1. 해 선택 : 부분 해 집합에 추가 다음 항목 선택 현재 상태 최적화 기준 만족 여부 확인 2. 적합성 검증 : 새로운 부분 해 집합 조건 여부 확인 현재 집합이 해가 될 가능성 검사 3. 해 검증 : 신규 구성 집합이 해인지 검사 문제가 아니면 1번으로 돌아가서 반복 풀이 1...
도입 백준 단계별 풀기 그리디 알고리즘 세 번째 문제이다. 그리디 알고리즘 그리디 알고리즘(탐욕 알고리즘)이란, 문제를 해결하는 과정에서 그 순간순간마다 최적이라고 생각되는 결정을 하는 방식으로 진행하여 최종 해답에 도달하는 문제 해결 방식이다. 특징 - 1. 최적성의 원리 : 주어진 문제에 대한 최적해가 분할된 부분 문제의 최적해로 구성된다는 원리. - 2. 최적 해 보장 불가 - 3. 효율성 개선 그리디 알고리즘 수행절차 1. 해 선택 : 부분 해 집합에 추가 다음 항목 선택 현재 상태 최적화 기준 만족 여부 확인 2. 적합성 검증 : 새로운 부분 해 집합 조건 여부 확인 현재 집합이 해가 될 가능성 검사 3. 해 검증 : 신규 구성 집합이 해인지 검사 문제가 아니면 1번으로 돌아가서 반복 풀이 1...
도입 백준 단계별 풀기 그리디 알고리즘 두 번째 문제이다. 그리디 알고리즘 그리디 알고리즘(탐욕 알고리즘)이란, 문제를 해결하는 과정에서 그 순간순간마다 최적이라고 생각되는 결정을 하는 방식으로 진행하여 최종 해답에 도달하는 문제 해결 방식이다. 특징 - 1. 최적성의 원리 : 주어진 문제에 대한 최적해가 분할된 부분 문제의 최적해로 구성된다는 원리. - 2. 최적 해 보장 불가 - 3. 효율성 개선 그리디 알고리즘 수행절차 1. 해 선택 : 부분 해 집합에 추가 다음 항목 선택 현재 상태 최적화 기준 만족 여부 확인 2. 적합성 검증 : 새로운 부분 해 집합 조건 여부 확인 현재 집합이 해가 될 가능성 검사 3. 해 검증 : 신규 구성 집합이 해인지 검사 문제가 아니면 1번으로 돌아가서 반복 풀이 1...
도입 백준 단계별 풀기 그리디 알고리즘 첫 번째 문제이다. 그리디 알고리즘 그리디 알고리즘(탐욕 알고리즘)이란, 문제를 해결하는 과정에서 그 순간순간마다 최적이라고 생각되는 결정을 하는 방식으로 진행하여 최종 해답에 도달하는 문제 해결 방식이다. 특징 - 1. 최적성의 원리 : 주어진 문제에 대한 최적해가 분할된 부분 문제의 최적해로 구성된다는 원리. - 2. 최적 해 보장 불가 - 3. 효율성 개선 그리디 알고리즘 수행절차 1. 해 선택 : 부분 해 집합에 추가 다음 항목 선택 현재 상태 최적화 기준 만족 여부 확인 2. 적합성 검증 : 새로운 부분 해 집합 조건 여부 확인 현재 집합이 해가 될 가능성 검사 3. 해 검증 : 신규 구성 집합이 해인지 검사 문제가 아니면 1번으로 돌아가서 반복 풀이 1...
도입 백준 단계별 풀기에서 우선순위큐 네 번째, 마지막 문제이다. 풀이 0. 우선순위큐는 큐의 FIFO의 구조가 아닌, 들어간 순서에 상관없이 우선순위가 높은 순서대로 OUT한다. 여기서, 최소힙이란, 루트노드에 가장 작은 값이 위치하는 것이다. 부모 노드는 항상 자식 노드에 들어있는 값 보다 작다. 1. 우선순위큐에 대한 자료구조에 대한 지식이 필요하다. 만약 우선순위큐 자료구조에 대한 지식이 아직 없다면, 먼저 해당 지식을 먼저 알아보자. 필자는 파이썬에서 제공하는 heapq를 활용하여 문제를 풀 예정이다. 자바의 PriorityQueue 클래스와 결을 같이 한다. heapq는 말그대로 힙의 자료구조를 활용하여 우선순위큐를 구현하는 것인데, 힙을 사용하는 이유, 즉 배열과 연결리스트를 사용하지 않는 ..
도입 백준 단계별 풀기에서 우선순위큐 세 번째 문제이다. 풀이 0. 우선순위큐는 큐의 FIFO의 구조가 아닌, 들어간 순서에 상관없이 우선순위가 높은 순서대로 OUT한다. 여기서, 최소힙이란, 루트노드에 가장 작은 값이 위치하는 것이다. 부모 노드는 항상 자식 노드에 들어있는 값 보다 작다. 1. 우선순위큐에 대한 자료구조에 대한 지식이 필요하다. 만약 우선순위큐 자료구조에 대한 지식이 아직 없다면, 먼저 해당 지식을 먼저 알아보자. 필자는 파이썬에서 제공하는 heapq를 활용하여 문제를 풀 예정이다. 자바의 PriorityQueue 클래스와 결을 같이 한다. heapq는 말그대로 힙의 자료구조를 활용하여 우선순위큐를 구현하는 것인데, 힙을 사용하는 이유, 즉 배열과 연결리스트를 사용하지 않는 이유는 시..