일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
31 |
- 백준
- AndroidStudio
- Python
- codingtest
- 동적계획법과최단거리역추적
- cos pro
- cos
- cos pro 1급
- Flutter
- 동적계획법
- 코딩테스트
- 알고리즘
- 코드품앗이
- k8s
- vuejs
- Algorithm
- C++
- issue
- 안드로이드
- BAEKJOON
- DART
- DFS와BFS
- 코테
- django
- 개발
- 분할정복
- DFS
- 파이썬
- android
- 안드로이드스튜디오
- Today
- Total
목록Algorithm (123)
Development Artist

문제 유형 빈칸 난이도 easy Note Nothing Code # -*- coding: utf-8 -*- # UTF-8 encoding when using korean def func_a(numA, numB, exp): if exp == '+': return numA + numB elif exp == '-': return numA - numB elif exp == '*': return numA * numB def func_b(exp): for index, value in enumerate(exp): if value == '+' or value == '-' or value == '*': return index def func_c(exp, idx): numA = int(exp[:idx]) numB = in..

문제 유형 빈칸 난이도 easy Note 1. 해밍 디스턴스(Hamming distance)가 무엇인지. Code def func_a(string, length): padZero = "" padSize = length - len(string) for i in range(padSize): padZero += "0" return padZero + string def solution(binaryA, binaryB): max_length = max(len(binaryA), len(binaryB)) binaryA = func_a(binaryA, max_length) binaryB = func_a(binaryB, max_length) hamming_distance = 0 for i in range(max_lengt..

문제 유형 빈칸 난이도 easy Note 1. 파이썬에서 Class와 def를 어떻게 정의하는지. 2. self의 용도가 무엇인지. Code # -*- coding: utf-8 -*- # UTF-8 encoding when using korean from abc import * class DeliveryStore(metaclass=ABCMeta): @abstractmethod def set_order_list(self, order_list): pass @abstractmethod def get_total_price(self): pass class Food: def __init__(self, name, price): self.name = name self.price = price class PizzaSto..

도입 백준 알고리즘 분류-그리디 알고리즘 열 다섯 번째 문제이다. 그리디 알고리즘 그리디 알고리즘(탐욕 알고리즘)이란, 문제를 해결하는 과정에서 그 순간순간마다 최적이라고 생각되는 결정을 하는 방식으로 진행하여 최종 해답에 도달하는 문제 해결 방식이다. 특징 - 1. 최적성의 원리 : 주어진 문제에 대한 최적해가 분할된 부분 문제의 최적해로 구성된다는 원리. - 2. 최적 해 보장 불가 - 3. 효율성 개선 그리디 알고리즘 예시 : 거스름돈 최소 동전 수 그리디 알고리즘 수행절차 1. 해 선택 : 부분 해 집합에 추가 다음 항목 선택 현재 상태 최적화 기준 만족 여부 확인 2. 적합성 검증 : 새로운 부분 해 집합 조건 여부 확인 현재 집합이 해가 될 가능성 검사 3. 해 검증 : 신규 구성 집합이 해인..

도입 백준 알고리즘 분류-그리디 알고리즘 열 세 번째 문제이다. 그리디 알고리즘 그리디 알고리즘(탐욕 알고리즘)이란, 문제를 해결하는 과정에서 그 순간순간마다 최적이라고 생각되는 결정을 하는 방식으로 진행하여 최종 해답에 도달하는 문제 해결 방식이다. 특징 - 1. 최적성의 원리 : 주어진 문제에 대한 최적해가 분할된 부분 문제의 최적해로 구성된다는 원리. - 2. 최적 해 보장 불가 - 3. 효율성 개선 그리디 알고리즘 예시 : 거스름돈 최소 동전 수 그리디 알고리즘 수행절차 1. 해 선택 : 부분 해 집합에 추가 다음 항목 선택 현재 상태 최적화 기준 만족 여부 확인 2. 적합성 검증 : 새로운 부분 해 집합 조건 여부 확인 현재 집합이 해가 될 가능성 검사 3. 해 검증 : 신규 구성 집합이 해인지..

도입 백준 알고리즘 분류-그리디 알고리즘 여덟 번째 문제이다. 그리디 알고리즘 그리디 알고리즘(탐욕 알고리즘)이란, 문제를 해결하는 과정에서 그 순간순간마다 최적이라고 생각되는 결정을 하는 방식으로 진행하여 최종 해답에 도달하는 문제 해결 방식이다. 특징 - 1. 최적성의 원리 : 주어진 문제에 대한 최적해가 분할된 부분 문제의 최적해로 구성된다는 원리. - 2. 최적 해 보장 불가 - 3. 효율성 개선 그리디 알고리즘 예시 : 거스름돈 최소 동전 수 그리디 알고리즘 수행절차 1. 해 선택 : 부분 해 집합에 추가 다음 항목 선택 현재 상태 최적화 기준 만족 여부 확인 2. 적합성 검증 : 새로운 부분 해 집합 조건 여부 확인 현재 집합이 해가 될 가능성 검사 3. 해 검증 : 신규 구성 집합이 해인지 ..

도입 백준 알고리즘 분류-그리디 알고리즘 열 번째 문제이다. 그리디 알고리즘 그리디 알고리즘(탐욕 알고리즘)이란, 문제를 해결하는 과정에서 그 순간순간마다 최적이라고 생각되는 결정을 하는 방식으로 진행하여 최종 해답에 도달하는 문제 해결 방식이다. 특징 - 1. 최적성의 원리 : 주어진 문제에 대한 최적해가 분할된 부분 문제의 최적해로 구성된다는 원리. - 2. 최적 해 보장 불가 - 3. 효율성 개선 그리디 알고리즘 예시 : 거스름돈 최소 동전 수 그리디 알고리즘 수행절차 1. 해 선택 : 부분 해 집합에 추가 다음 항목 선택 현재 상태 최적화 기준 만족 여부 확인 2. 적합성 검증 : 새로운 부분 해 집합 조건 여부 확인 현재 집합이 해가 될 가능성 검사 3. 해 검증 : 신규 구성 집합이 해인지 검..

도입 백준 알고리즘 분류-그리디 알고리즘 다섯 번째 문제이다. 그리디 알고리즘 그리디 알고리즘(탐욕 알고리즘)이란, 문제를 해결하는 과정에서 그 순간순간마다 최적이라고 생각되는 결정을 하는 방식으로 진행하여 최종 해답에 도달하는 문제 해결 방식이다. 특징 - 1. 최적성의 원리 : 주어진 문제에 대한 최적해가 분할된 부분 문제의 최적해로 구성된다는 원리. - 2. 최적 해 보장 불가 - 3. 효율성 개선 그리디 알고리즘 예시 : 거스름돈 최소 동전 수 그리디 알고리즘 수행절차 1. 해 선택 : 부분 해 집합에 추가 다음 항목 선택 현재 상태 최적화 기준 만족 여부 확인 2. 적합성 검증 : 새로운 부분 해 집합 조건 여부 확인 현재 집합이 해가 될 가능성 검사 3. 해 검증 : 신규 구성 집합이 해인지 ..

도입 백준 알고리즘 분류-그리디 알고리즘 첫 번째 문제이다. 그리디 알고리즘 그리디 알고리즘(탐욕 알고리즘)이란, 문제를 해결하는 과정에서 그 순간순간마다 최적이라고 생각되는 결정을 하는 방식으로 진행하여 최종 해답에 도달하는 문제 해결 방식이다. 특징 - 1. 최적성의 원리 : 주어진 문제에 대한 최적해가 분할된 부분 문제의 최적해로 구성된다는 원리. - 2. 최적 해 보장 불가 - 3. 효율성 개선 그리디 알고리즘 예시 : 거스름돈 최소 동전 수 그리디 알고리즘 수행절차 1. 해 선택 : 부분 해 집합에 추가 다음 항목 선택 현재 상태 최적화 기준 만족 여부 확인 2. 적합성 검증 : 새로운 부분 해 집합 조건 여부 확인 현재 집합이 해가 될 가능성 검사 3. 해 검증 : 신규 구성 집합이 해인지 검..

도입 백준 단계별 풀기 DFS와 BFS 열한 번째, 마지막 문제이다. DFS와 BFS DFS - Root Node 혹은 다른 임의의 Node에서 이어진 Branch를 완벽하게 탐색하고 다른 이어진 Branch로 넘어가는 방법. 한 방향으로 계속 가서 끝을 마주하면 다른 방향으로 설정해서 마찬가지로 진행. - Stack 또는 Recursive함수로 구현. - 시간 복잡도 : 인접 리스트는 $O(V+E)$ 인접 행렬은 $O(V^2)$ // 접점(V), 간선(E) BFS - Root Node 혹은 다른 임의의 Node에서 이어진 Branch들의 바로 하나 건너 있는 Node들을 먼저 탐색. - Queue로 구현 - 시간 복잡도 : 인접 리스트는 $O(V+E)$ 인접 행렬은 $O(V^2)$ // 접점(V), 간..